
Quantitative models of information transfer during
mammalian visual processing

PREETHOM PAL

SID: 470407190

Supervisor: A/Prof Joseph Lizier

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science/Advanced Computing (Honours)

School of Computer Science
The University of Sydney

Australia

May 2023



Student Plagiarism: Compliance Statement

I certify that:

I have read and understood the University of Sydney Student Plagiarism: Coursework Policy and Pro-

cedure;

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Procedure

can lead to the University commencing proceedings against me for potential student misconduct under

Chapter 8 of the University of Sydney By-Law 1999 (as amended);

This Work is substantially my own, and to the extent that any part of this Work is not my own I have

indicated that it is not my own by Acknowledging the Source of that part or those parts of the Work.

Name: Preethom Pal

Signature: Date: 28 May 2023

ii



Abstract

Information transfer is one piece to the three-part puzzle of explaining information processing which

includes information storage, transfer and modification. Quantifying any of these in a natural system like

a neuronal population is a significant challenge given the differences in computation by a dynamic com-

plex system, housing highly distributed and parallelised processes, to traditional computers. However,

an information theoretic approach allows direct quantification of information processing in a distributed

setting, and its measures attain statistical power even in the presence of high-dimensional data. Mean-

while, recent advancements in high density extracellular imaging via silicon probes allowed the capture

of a high resolution dataset showing in vivo neural activity in the visual areas of mouse brains. This

leads us to a unique opportunity to directly quantify visual information processing in mice. Retinotopy

and lamination in the mammalian visual cortex suggests hierarchical information processing of the vi-

sual field. Although this can be demonstrated by studying latency of functional activity between layers,

the literature does not offer quantification of typical information transfer between these cortical layers,

or across higher order association visual areas. This project evaluates two major tools that quantify in-

formation transfer; transfer entropy and effective network inference. Transfer entropy is able to measure

the information transfer between two neuronal processes, over some duration of activity, while inferring

an effective network can capture multivariate information transfers inside a neuronal population. Histor-

ically, estimating transfer entropy required binning of signalling events into discrete time bins, however

recently an estimator for transfer entropy in continuous time was developed. Our results from using the

continuous-time estimator in conjunction with effective network inference add nuance to expectations

in the primary visual cortex. Hierarchical processing is not necessarily followed during short time win-

dows. Layer 4 is not always the primary source of information to all layers. Layers 2/3 and 5 do not

always reflect intermediary and final information processing respectively. Transfers between cortical ar-

eas from disparate areas of the visual field mostly follow expectations but we find unexpected transfers

from high order to low order layers. These findings reflect how short-term information transfers need not

follow functional analysis. Our evaluation establishes the information theoretic approach as necessary

to better understand not only information processing in the brain but natural computation as a whole.
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CHAPTER 1

Introduction

This project is at the intersection of three disciplines; neuroscience, complex systems theory and in-

formation theory. This introduction describes the project and its motivations in general terms so that

they are understandable to the computer scientist. Further necessary details from each discipline will be

covered in the literature review.

The aim of this project is to use and evaluate various tools that are able to quantify information transfer

inside the visual cortex. The results are presented to improve our understanding of mammalian infor-

mation processing and to showcase novel tools that can be further applied and refined to understand any

natural source of information processing. The project is a step towards describing in detail how mam-

malian brains are able to compute such dense informational inputs for an impressively generalised set of

tasks, and describe where pathologies in information processing emerge, a major goal in neuroscience

(Oppenheimer and Kelso, 2015). The project also aids a major goal in computer science by way of pro-

viding inspiration for the design of artificial intelligence systems from naturally occurring computation.

Biological sources of computation are particularly good at generalising across tasks and at producing

precise behaviours, under continuous and widely distributed informational input (Wang et al., 2007).

Current artificial intelligence rarely generalises well, and processes discrete informational inputs which

limits its performance in physical settings, such as robotics and self-driving cars.

These goals are aided as follows. Given data of the times and locations of signalling events in a neu-

ronal population, we quantify the information transferred between neurons over a specific observation

window. Information transfer can be quantified using a pairwise or multivariate analysis (Novelli and

Lizier, 2021). The latter leads to a network model that reflects transfers between pairs of neurons but

in the context of the whole population’s activity. This network model is called an effective network

(Shorten et al., 2022b). An effective network could vary from task to task, even when inferred from the

same neuronal population with a relatively fixed structural connectivity (Friston, 2011). The effective
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1 INTRODUCTION 2

network does not reflect structural connections and instead reflects multivariate information transfers

that are expected to vary across computational tasks. This model could therefore lead to a deeper under-

standing of how a population of mammalian neurons are able to process continuous informational input

across generalised tasks, by pointing to new multivariate transfers in different tasks. Effective networks

could also elucidate signatures of information processing typical to some tasks or areas of the brain,

and how these differ inside pathologies. Finally, an effective network and future models in the same

approach quantify natural information processing, with no associated details about the system’s physics

or physiology. In other words, the natural system is reduced to a model of its information processing

ability only. Such a model would be helpful in engineering an artificial system that mimics natural in-

formation processing, since one could begin identify and build the required fundamental elements that

are most relevant (Kaiser, 2007).

The visual cortex was chosen as it is a well understood area of neuroscience, being relatively easy

to image, with the ability to easily test the effects of varying input on brain activity. This gives the

project the opportunity to discuss its findings from novel methods in the context of a well established

literature. The current understanding of mammalian visual processing describes complex hierarchical

processing inside the primary visual cortex, with nuanced directional information flow (Thomas Yeo

et al., 2011). Information flows are described between at least six cortical layers, as well as to and from

visual association areas outside the primary visual cortex. Limitations to the current understanding of

visual processing arise due to studies focusing on either physical structure or functional connectivity

inferred from pairwise comparison of active brain regions during tasks in vivo (Harris and Shepherd,

2015). Physical connectivity does not represent information processing. While functional connectivity is

a better analogue for information processing, it stills fails to capture multivariate information processing,

such as the visual encoding of a scene allowed by three or more active areas (Geerligs et al., 2016). These

are not easy or unnoticed challenges. The high-dimensional nature of neuronal populations explodes the

state space inside their activity, where each state could be encoding some useful information to the

animal (Novelli et al., 2019). It is difficult to measure how representations of information could be

interacting and transforming with such a large search space of possibly meaningful states.

The information theoretic approach evaluated in this project improves on these limitations by offering

tools to quantify information transfer in a neuronal population, even with high-dimensional data. These

tools measure how much information is being transferred inside a neuronal population and in which

directions. The information transfer measured does not describe what the information may represent or
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how it might be transformed for the purposes of solving a particular task. The methods used are novel

since they quantify information transfer directly, as opposed to some analogue of changing information,

as is the case in typical analysis of functional brain imaging (Bzdok and Yeo, 2017).

The data used in this project comes from in vivo extracellular recordings of neuronal signalling events

inside and around the primary visual cortex (V1) of mice, measured by Stringer et al. (2019). The results

are discussed in the context of current understanding about the hierarchical information processing done

by the six cortical layers in V1 and surrounding areas. The methods are described and evaluated in

detail so that they may be applied to further recorded neuronal populations to improve understanding of

mammalian information processing. The overall approach may also be applied to any recorded source

of natural computation.

1.1 List of project aims

Given recordings of signalling events from visual areas in mice, our global aim is to identify and quantify

significant information transfers inside the neuronal population.

(1) Search for pairwise information transfer inside and between local excitatory circuits (otherwise

called ‘columns’) in the primary visual cortex (V1) in mice.

(a) Search for pairwise transfers from cells in each layer of V1 columns, to cells in every

other layer.

(b) Search for pairwise transfers between V1 columns.

(c) Search for pairwise transfers between V1 columns and association visual areas. The latter

are cortices outside of V1 that still process visually related information.

(2) Infer effective network(s) inside and between local excitatory circuits in V1.

(3) Examine how the findings on quantified information transfer can contribute to current knowl-

edge about visual processing.

(a) Quantification should add to understanding about the direction and capacity of information

transfer.

(b) Comparison of pairwise analysis and the multivariate analysis offered by effective net-

works should elucidate how visual areas are able to take advantage of a distributed form

of information processing.
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(4) Evaluate the extent to which the information theoretic approach is able to model natural infor-

mation processing occurring in a recorded system and describe future directions.

1.2 Overview of approach

This section briefly summarises the information theoretic approach used to meet the above aims. This

overview should help indicate why the definitions and past methods described in the literature review

are relevant to the project. Further details about the methodology are found in Chapter 3.

The notion of information transfer is in the context of the three component operations to information

processing as a whole, first described by Turing (1937). These are information storage, transfer and

modification. Since then, information theory has developed to provide definitions for these operations

that can be applied to natural distributed systems (Wibral et al., 2014; Mitchell, 1998; Langton, 1990).

Information theory describes information as the reduction in uncertainty about an unknown variable,

given knowledge about another variable. Information storage refers to some stable representation that

later reduces uncertainty about a new state in the system (Wibral et al., 2014). Information transfer

can be thought of as an immediate reduction in uncertainty about a new state, given the state of another

distant variable in the system (Bossomaier et al., 2016). There is some contention about how information

modification should be defined in distributed systems (Lizier et al., 2013). However, it can be thought of

as the nontrivial synthesis of stored or transferred information, resulting in changes to these that would

be unexpected by uniquely considering either.

This project quantifies information transfer using an information theoretic measure called transfer en-

tropy (Bossomaier et al., 2016). In the following context, a process is some observed variable that

transforms its state over time. Transfer entropy is designed to capture the reduction in uncertainty about

the next state of some process due to the state of a distinct process. Average transfer entropy as a rate

can calculate contributions to information transfer between states in the source process to the next state

of the target process over the whole observation window. See section 2.2 for more details.

Standard transfer entropy is a pairwise measure. In order to measure multivariate information transfer,

a conditional form of transfer entropy is used (Novelli and Lizier, 2021). This captures the reduction in

uncertainty about the next state of some process, due to the current state of a distinct process, in the con-

text of one or more states of other source processes. This form can be applied iteratively in a neuronal
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population to build an effective network, which reflects multivariate transfers inside the neuronal popu-

lation over the observation window. The multivariate transfers are only inferred if they are significant,

in the sense that they maximally explain the target process’ states with the minimal number of sources

required. A full description effective networks and the greedy algorithm used for their inference can be

found in section 2.5.

The estimation of transfer entropy from recordings of neuronal activity has historically been limited

(Shorten et al., 2021). This is because neuronal signals are in effect instantaneous events that occur in

continuous time, while estimators for transfer entropy had only been designed to operate on events in

discrete time. Shorten et al. (2021) presented a continuous-time estimator for transfer entropy between

events which proved more consistent and less biased than discrete time estimators in the neuronal setting.

Further, the continuous-time estimator removes limitations on effective network inference from neuronal

populations (Shorten et al., 2022b). The way in which the estimator encodes events allows it to operate

on short and long time scales at once, preventing an explosion in state space to search through when

estimating the substantial number of conditional probabilities needed by effective network inference.

See sections 2.2 and 2.5 for further details of the advantages of the new estimator over discrete-time

estimators.

This project therefore evaluates the continuous-time estimator in conjunction with effective network in-

ference. The high dimensional recordings offered by the dataset should leverage the advantages of the

new estimator, offering new insights into information processing in visual areas. Expected hierarchical

information processing (see section 2.6 is not always found by our results. This leads to a more nu-

anced view of visual processing wherein the direction of significant transfers are unpredictable on short

enough time scales, under unknown informational input. By being the most principled in quantifying

information transfer, the above information theoretic approach is suggested to be critical then in future

studies of neural information processing.



CHAPTER 2

Literature Review

The goal of this literature review is to reason why the current approach towards capturing multivariate

information transfers in recorded neuronal populations from visual areas in mice is indeed best suited to

do so, and to point out any limitations. The project goal is framed inside the pursuit towards understand-

ing mammalian information processing and natural sources of computation as a whole. Any relevant

background in neuroscience, complex systems theory, and information theory unfamiliar to computer

science graduates are also explained in detail.

2.1 Challenges in modelling neural information processing

By first discussing the challenges in modelling neural information processing (and from similar natural

sources) when using traditional models of computation, this section introduces how the application of

complex systems theory and information theory can address those limitations. Relevant detail about the

physiology of neurons are also described when needed.

2.1.1 Turing machines do not model natural computation

Biological systems that process information are particularly good at processing continuous and widely

distributed informational input in a highly parallelised manner (MacLennan, 2004; Ben-Jacob, 2009;

Kaiser, 2007). This is distinct to most traditional models of computation that process discrete, serialised

informational inputs. Consider how information is usually stored, transferred and modified in biological

systems. First, information is stored in states that are continuous with each other, where a state is

some pattern distributed in space and time (MacLennan, 2004). Second, information is communicated

between local elements of the system in a highly decentralised, parallel and often random manner (Ben-

Jacob, 2009). Finally, computation for a particular task appears to emerge in the system without external

control (MacLennan, 2004).

6
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For example, ant colonies are able to self-organise to select paths towards food that optimise their time

spent travelling (Dorigo et al., 1999; Oettler et al., 2013). The information allowing the computation of

fastest path is likely contained in several dimensions such as ant positions, pheromone deposits, envi-

ronmental features and locations of food. These dimensions have continuous states and are distributed

in space and time. Information is communicated between ants as they continuously interact with the

environment and search for food. Although these interactions appear random to a local observer, the ant

colony as a whole is able to utilise the parallelised, distributed information processing by individuals to

compute the fastest path to food.

A traditional model of computation such as the Turing Machine inaccurately represents each step to

information processing here (MacLennan, 2004). Information in the Turing Machine is encoded by an

infinite tape with discrete cells, a register pointing to one of a finite number of discrete states and a finite

table of instructions declaring how to change between states. Information is transferred between cells of

the infinite tape and the next state of the machine in a noise-free and serial manner, following determin-

istic rules that have been exactly defined by the table of instructions. Lastly, the task-specification of a

Turing Machine is controlled by the human writing the computer.

Wherever information is encoded by the Turing Machine, it is represented by elements that are discrete

and distinguishable. This is radically different to the continuous states encoding information found in

nature (Crnkovic, 2011). Secondly, transfer of information between local elements in biological systems

occurs under the effects of noise unlike the communication in Turing Machines (Findling and Wyart,

2021). As explored by Findling and Wyart (2021) this is not necessarily a limit on computation but

can be adaptive in many natural contexts. Further, the steps of the Turing Machine’s communication

occur serially and deterministically, rather than in parallel and stochastically (Ben-Jacob, 2009). Finally,

in biological systems, the fitting of a system’s characteristics to a computational task occurs without

any apparent external control. Rather than being designed for specific computational tasks like Turing

Machines, the ability to compute seems to emerge in response to selective pressures (MacLennan, 2004).

2.1.2 Complex systems theory can model natural computation

This subsection explores the potential for complex systems theory to provide a more suitable model of

natural computation. This will afterwards be developed into why information theory should be used to

add quantified measures of information processing that are accurate to the setting.
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Complex systems theory can be applied to capture many key features of biological systems found in

nature (Simeonov, 2010; Crnkovic, 2012). A complex system can be described as a system of simple

elements, each following a relatively small set of local rules, that interact over time and produce sur-

prisingly ordered structure at scale (Siegenfeld and Bar-Yam, 2020). The surprise an observer feels is

a key feature. These ordered macroscopic structures are characteristically difficult to predict even with

prior knowledge of the local rules. Studies in complex systems have found that structures are sensitive to

network structure and initial conditions and so this has often been a point of experimentation (Newman,

2003).

When the appearance of ordered structure at scale occurs without external control, it is called emergence

(Goldstein, 2011). ‘Self-organisation’ may also be used when the ordered structure appears over time.

Sayama (2015) describes self-organisation as "a dynamical process by which a system spontaneously

forms non-trivial macroscropic structures/behaviours over time."

Network models that display self-organisation seem suited to identify the information processing al-

lowed by natural systems (Simeonov, 2010). This is because the appearance of ordered structure at scale

can imply information processing. For example, Ben-Jacob (2009) suggests that bacterial populations

optimise the density of cells across a nutrient-poor or hard surface by relying on information process-

ing that is distributed across individual cells’ interactions with their environment and local signalling to

other cells. Their study identified this form of distributed information processing after modelling the

population as a complex system. Nodes were individual cells and ordered patterns of cell distribution on

new surfaces emerged as a consequence of local environmental interaction and communication rules.

In neuronal populations, emergent structures that underlie functions like decision-making and long-term

memory are more challenging to identify, since informational inputs and their processing far exceed the

complexity of systems like bacterial populations. Nevertheless, network models following the complex

systems approach have often been successful in describing the appearance of ordered structure and point-

ing to possible associated information processing (Denève and Machens, 2016; Buzsáki and Draguhn,

2004; Wang, 2002; Compte et al., 2000; Brunel, 2000; Dlesmann et al., 1999; Hopfield, 1982; Amari

and Kishimoto, 1978). Before elaborating on some examples of successful network models that imply

the information processing capabilities of neuronal populations, this review explains the physiology of

neurons relevant to information processing. This should first reason why the complex systems analysis

is biologically faithful.
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2.1.3 Complex systems models are biologically faithful

By examining the physiological interactions between neurons that give rise to state changes and the ap-

pearance of ordered structure within the population, it becomes evident that modeling the population as

a complex system can faithfully capture its dynamics and information processing capabilities (Hopfield,

1982).

Neurons are specialised mammalian brain cells that have distinct states which are controlled by inter-

actions with other neurons and are observed to encode information (Gerstner and Kistler, 2008a). The

following neuronal physiology is summarised from Bear et al. (2015). A neuron will either be in a firing,

or non-firing (‘resting’) state, as characterised by the potential difference across its celullar membrane

(‘membrane potential’), which is controlled by varying ion concentrations inside and outside of the cell.

When firing, the neuron will undergo physiological changes such that smaller molecules (‘neurotrans-

mitters’) are released by a projection from the neuron called an axon. The axon terminates in a tree-like

structure, where branches (‘axon terminals’) interface with other neurons. Arriving neurotransmitters at

a target neuron interface with another tree-like structure called the dendrites. Neurotransmitters cause

cellular changes that affect the receiving neuron’s membrane potential. Given enough neurotransmitters

received, the membrane potential will cross a threshold and the neuron will enter the firing state. The

firing state is characterised by a sharp increase in membrane potential, followed by a sharp decrease.

This shape is the reason for the firing event being called a spike.

The interface between an axon terminal of one neuron and the dendrites of another is called a synapse.

The two neurons are respectively referred to as pre-synaptic and post-synaptic. Synapses vary in ‘effi-

cacy’ or ‘weight’, in that a neuron’s membrane potential is more strongly controlled by any pre-synaptic

spikes that arrive at synapses with higher weight. Varying synaptic efficacy can be due to the effects of

neuromodulators (bio-molecules present in the synaptic cleft) or due to larger release of neurotransmit-

ters by the pre-synaptic neuron.

Note that neurotransmitters received when firing or immediately after firing (during a ‘refractory pe-

riod’) do not lead to dramatic changes in membrane potential, such that another spike or some kind of

prolonged spike occurs.

In contrast to the behaviour described, around a fifth of neurons in mammalian brains release inhibitory

neurotransmitters. The effect of these is to decrease the targeted neuron’s membrane potential and reduce

the chance of firing. The majority of neurons release excitatory neurotransmitters, as described above.
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In summary, neuronal states are governed by local interaction rules inside a directed network. When

enough excitatory pre-synaptic neurons fire that have high enough synaptic weights, within a short

enough time frame, the post-synaptic neuron fires.

Spikes therefore occur at continuous points in time, across spatially distributed neurons (Gerstner and

Kistler, 2008b). Spikes will be propagated across the network in parallel, though their communication is

under the effects of noise (Gerstner and Kistler, 2008c). This is because synapses are easily modulated

by their environment, such that the effects of neurotransmitters on the post-synaptic neuron’s membrane

potential are noisy.

If an observer considers neuronal state changes the primary method to encode information, then neu-

ral information processing occurs as follows. Information is encoded by the patterns of spiking events

that are continuous across space and time (‘spatiotemporal dynamics’) (Brunel, 2000). Information is

communicated in parallel, and stochastically between neurons (Dlesmann et al., 1999). Although inputs

can appear random and communication occurs under the effects of noise, highly ordered spatiotempo-

ral dynamics emerge (Lizier, 2013). These self-organised structures then inform various mammalian

behaviours that have evolved.

Network models under the complex systems theory approach therefore seem especially suited to finding

emergent, ordered spatiotemporal dynamics of neurons and pointing to their information processing ca-

pabilities. They remain biologically faithful so long as the above rules of spiking dynamics are followed.

A famous example is the working memory model of cortical neurons developed by Compte et al. (2000).

They used a columnar network architecture, close to that found in the prefrontal cortex of macaque mon-

keys. Neurons (with spikes controlled by a model called ‘leaky integrate-and-fire’ (Tsodyks et al., 2000))

were spatially distributed on a ring, such that each could be thought of as encoding an angle on a circle.

This was to represent the macaque monkey’s response in the prefrontal cortex to a oculomotor delayed

response task. In this task, subjects fixate on a central cue on a screen. A peripheral target appears,

then disappears after some delay. On disappearance, the subject’s eyes will flick to the target position,

therefore relying on working memory (Tsujimoto and Postle, 2012). Neurons in the monkey prefrontal

cortex preferentially respond to the angle to the target cue (Funahashi et al., 1989), and so this prefer-

ential sensitivity was modelled by Compte et al. (2000). They found that, using a connectivity where

nearby neurons were strongly excited and neurons further away were weakly excited, the network dis-

played a sustained response, preferential to the target cue, consistent with the delayed response to the

disappearing target in animal studies. This sustained response (increase in firing rate) in a subset of
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neurons is an example of ordered spatiotemporal dynamics in a network model that could be said to be

encoding information relevant to a task.

Ordered spatiotemporal dynamics found under the complex systems approach can be more intricate than

increase in a neighbourhood’s firing rate. Consider the model of olfactory processing neurons in the

antennal lobe of locusts developed by Rabinovich et al. (2001). This model utilised attractor dynamics.

Attractor dynamics refer to high probability or ‘low energy’ states that exist inside the network activity.

Random input to a network with attractor dynamics will perturb the system, but usually ultimately lead

to one of the attractor states or ‘points.’ Rabinovich et al. (2001) found that constructing a network

with unstable attractor dynamics allowed unique inputs to lead to consistent trajectories through saddles

between attractor points. Each trajectory can therefore be thought of as encoding a specific smell.

This was similar to specific path firing of olfactory processing neurons found in locusts. Their model

discovered how a particular network architecture leads to biologically feasible ordered spatiotemporal

dynamics.

The above models still do not offer quantitative descriptions of information processing. They discover

ordered spatiotemporal dynamics in certain architectures and allude to possibly associated information

processing. The next subsection describes why an application of information theory can address this

limitation.

2.1.4 Information theory helps quantify neural information processing

An information theoretic approach can provide quantitative descriptions of the information storage,

transfer and modification, controlled by the spatiotemporal dynamics found in a recorded neuronal pop-

ulation (Lizier et al., 2012; Prokopenko and Lizier, 2014; Lizier et al., 2010). Further, we can quantify

changes to the information processing (‘information dynamics’), due to varying input, task, environ-

ment, or other biological factors. These descriptions also give us a sense of the computational capacity

in varying populations, that is, how much uncertainty might be reduced, how quickly, and to what degree

of accuracy (Mceliece et al., 1987).

The appropriateness of information theory to modelling information processing in complex systems

stems from the fact that the measurements of information merely rely on observing state changes

(MacKay, 2022). This allows information to be quantified even in the unique distributed setting (Lizier,

2013). Since a complex systems approach allows precise modelling of network dynamics, an application
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of information theory to these models in turn allows us to observe state changes, and estimate quantities

of information storage, transfer and modification by the network.

The suitability also arises from information being defined independently of the physical mechanics driv-

ing the system. This means information can be measured without accounting for physiology unrelated

to state changes. Information theory’s definitions are built on the uncertainty an observer has about a

variable, not what the variable may represent or the mechanics of how the variable transforms (Cover

and Thomas, 2010). Following this approach gains quantified insights into information processing be-

fore solving the problem of identifying meaningful states in such a high-dimensional system and why

they are meaningful to an animal.

The effective network inference method evaluated in this project has been built using information the-

oretic measures combined with an understanding of complex systems. The search for quantified dis-

tributed information processing by complex systems is the source of inspiration for the effective network

model (Novelli and Lizier, 2021). This is further explored in section 2.5.

The next section of this review describes in detail the relevant fundamentals of information theory,

to reason why information theoretic measures can be applied to provide quantitative descriptions of

information processing in neuronal populations.

2.2 Modelling neural information processing via information theory

This section formally introduces the tools developed by information theory to measure information and

argues their effectiveness in quantitatively modelling information processing by a complex system like

a neuronal population.

2.2.1 Information theory precisely quantifies information

Information theory aims to effectively identify and quantify uncertainty and information (Cover and

Thomas, 2010). Information and uncertainty are described as ‘two sides of the same coin’. Information

is the reduction in uncertainty about a variable given knowledge of another variable. Uncertainty is the

predictability associated with a variable considering its range of possible values or states, where some

are more probable than others. In other words, the variable’s total entropy leads to how predictable it is

to an observer. Information theory uses this notion of entropy to quantify uncertainty.
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The most famous measure of entropy in the above sense is Shannon entropy (Shannon, 1948). Consider

a variable X that can have any value x drawn from some domain AX . Each x has some probability p(x)

of occurring. The Shannon entropy of X is defined by

H(X) =
X

x2AX

p(x) log2
1

p(x)
, (2.1)

and is measured in bits. Consider that as the domain AX increases in size, Shannon entropy increases.

This aligns with the previous notion of uncertainty. Another two useful properties are that the total

entropy is continuous with respect to p(x) and the joint entropy of two variables that are independent

(X ? Y ) is equal to the sum of their entropies (H(X,Y ) = H(X) +H(Y )).

Joint entropy (regardless of independence) captures the uncertainty about multiple variables together,

i.e. a multivariate {X,Y }. It is written as follows (MacKay, 2022).

H(X,Y ) =
X

x2AX

X

y2AY

p(x, y) log2
1

p(x, y)
(2.2)

This is analagous to Shannon entropy only summing over joint probability p(x, y), i.e. the probability

of values x and y occurring together.

Another way an observer may consider the entropy of a multivariate {X,Y }, is by assuming they al-

ready have knowledge of one of the variables Y . The observer’s question becomes what the average

uncertainty remaining over values x of X is, after knowing y of Y .

H(X|Y ) =
X

x2Ax

X

y2AY

p(x, y) log2
1

p(x|y) (2.3)

Equation 2.3 is called conditional entropy and applies conditional probability p(x|y) i.e., the probability

of x occurring given y (MacKay, 2022). This is useful in settings that require the inference of directed

uncertainty reduction.

Now suppose that an observer might now naturally quantify information as follows. They ask what the

reduction in uncertainty about a variable X is given what they know about another variable Y . This
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question may be written as the conditional entropy of X given Y removed from the Shannon entropy of

X alone.

I(X;Y ) = H(X)�H(X|Y ) (2.4)

Equation 2.4 arrives at the definition of mutual information (MI) between X and Y (Gelfand and

I’Aglom, 1959). Interestingly, MI is equivalent to asking how much more uncertainty there is about

each variable X and Y alone, compared to the uncertainty there is about them as an unknown multivari-

ate.

I(X;Y ) = H(X) +H(Y )�H(X,Y ) (2.5)

In the form presented in Equation 2.5, the Shannon entropies of each variable are summed and their

joint entropy is removed. This means MI is a symmetric notion of information (I(X;Y ) = I(Y ;X)).

Further, MI may be considered a measure of correlation between two variables and does not infer a

causal relationship. The observer only asks questions about uncertainty reduction.

MI may be written in terms of probabilities as follows.

I(X;Y ) =
X

x2Ax

X

y2Ay

p(x, y) log2
p(x, y)

p(x)p(y)
(2.6)

Some statistical properties emerge in Equation 2.6. I(X;Y ) = 0 if and only if X and Y are independent

(p(x, y) = p(x)p(y)). As a measure of correlation MI is non-linear, making it more applicable where

models of data with fewer assumptions are required.

In natural systems there are often more than two variables. To capture more effects when measuring

reductions in uncertainty, an observer should consider the contributions of other variables. For example,

consider three {X,Y, Z}. As previous, an observer may like to measure an uncertainty reduction about

X given knowledge of Y . However they now ask if knowing Z too leads to additional uncertainty

reduction about X , due to ‘synergistic effects’ between Z and Y . That is, knowledge of Z and Y

increases information compared to knowledge of either alone. An example of an informational network

where a synergistic contribution is likely is given in Figure 2.1. Similarly, the observer may ask if
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(A) Synergistic contribution between Z and Y to X . (B) Redundant contribution between Z and Y to X .

FIGURE 2.1. Synergy and redundancy between two informational sources.

knowing Z in addition to Y leads to less uncertainty reduction about X , compared to using only Y , due

to ‘redundant effects’ between Z and Y . A sample drawing where such a redundancy is more likely is

also in Figure 2.1. These questions are answered by the conditional mutual information (CMI) measure

(Wyner, 1978), defined between two variables X and Y given knowledge of Z as

I(X;Y |Z) = H(X|Z)�H(X|Y, Z). (2.7)

The conditional entropy of X given Y and Z is removed from X given Z alone. Should CMI be less

than standard MI, that is when I(X;Y |Z) < I(X;Y ), this quantifies a redundancy in the informa-

tion contribution between Y and Z about X . Similarly, when CMI is greater than the standard MI,

I(X;Y |Z) > I(X;Y ), this quantifies a synergistic contribution between Y and Z about X that cannot

be detected by considering either informational source alone. CMI thus provides a building block for

measuring interactions between informational sources in a multivariate setting. The next subsection will

explain how this can be applied to effectively identify multivariate information transfer in a complex

system. For completeness, CMI is written in terms of probabilities as follows.

I(X;Y |Z) =
X

x2Ax,y2Ay ,z2Az

p(x, y, z) log2
p(x, y|z)

p(x|z)p(y|z) (2.8)

The entropy measures for both single variables and multivariates, along with the information measures

for questions involving two or more variables, are summarised in Table 2.1. Notice that each of these
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Measure Formula

Shannon Entropy H(X) =
P

x2AX
p(x) log2

1
p(x)

Joint Entropy H(X,Y ) =
P

x2AX

P
y2AY

p(x, y) log2
1

p(x,y)

Conditional Entropy H(X|Y ) =
P

x2Ax

P
y2AY

p(x, y) log2
1

p(x|y)

Mutual Information I(X;Y ) = H(X)�H(X|Y )

Conditional Mutual Information I(X;Y |Z) = H(X|Z)�H(X|Y, Z)

TABLE 2.1. Fundamental information theoretic measures

fundamental measures leverage the probability distributions of variables to be precise about uncertainty

and information. This is advantageous since it allows us to estimate the ground truth distributions from

sampled data and in turn estimate uncertainty and information (Cover and Thomas, 2010). Further, there

are no assumptions in these measures about the ground truth probability distributions of variables. This

helps reduce bias when constructing estimators of information.

2.2.2 Multivariate time series allow quantification of distributed information processing

This section explains how to apply the information theoretic measures to quantify the distributed in-

formation processing found in complex systems. Consider that each element in a complex system (in

a neuronal population this will be a neuron) varies in some dimension(s) over time. We can represent

changes in each dimension for each element over time using a multivariate time series (Novelli and

Lizier, 2021).

In information theory, a time series that might encode information is called a ‘process’ and is denoted

by X, where each time index stores a variable Xi (Lizier, 2013). Each process has a ‘realisation’ for

which every variable in the process is sampled such that Xi = xi. A realisation is denoted by x.

In a neuronal population, the state changes over time can be represented by using one process for each

neuron. A process may store the changing membrane potential over time or more simply the neuron’s

changing binary state, where a firing state has instantaneous duration (Shorten et al., 2021). By including

some representation of each neuron’s spatial location, the resulting multivariate times series captures

spatiotemporal dynamics as described in section 2.1.
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The question emerges how to effectively identify and quantify information processing within the multi-

variate time series representation of a neuronal population. In this context of distributed computation, the

three key steps to information processing should still be distinguishable; information storage, transfer

and modification (Wibral et al., 2014).

For example to identify information storage by a single process, an observer may ask how much infor-

mation about a process’ future state they would have by observing its past history. This can be measured

by calculating the MI between all historic variables and the next variable within the process (Lizier et al.,

2012). This measure is called active information storage (AIS) and is defined for a process X with some

future variable Xn+1 and past variables X(k)
n as

AX(k) = I(X(k)
n ;Xn+1), (2.9)

where there are n past variables, k of which we would like to observe. AIS quantifies the information

afforded to a neuron by its own recent past states. This is information retained by neuronal dynamics,

as opposed to more ‘passive’ forms of information storage, such as information stored via synaptic

connection changes. Further, by leveraging MI, the measure takes into account non-linear effects of the

past. This allows any form of the neuron’s past dynamics to contribute to the stored information and

therefore AIS is an unbiased concept of information storage (Lizier, 2013).

Notably, since the measure relies solely on some process X , it has the potential to capture patterns in

an input variable that influences X without directly measuring that input variable. AIS measures any

information encoded by past dynamics that is relevant to the future state of the process, regardless of the

information’s original source.

Consider how in contrast an observer might strictly identify the information transfer from a source

process to a target process. Their question should seek a directed reduction in uncertainty about a future

state of the target process given knowledge of the source process. The observer therefore asks how much

information about a future variable in a target process X can be found from a variable in a source process

Y, in the context of the target’s past. This can be calculated using the conditional MI between the source

process’ variable Yn and the target process’ future variable Xn+1, conditioned on the target’s past X(k)
n .

This measure is called transfer entropy (TE) (Bossomaier et al., 2016) and is defined from Y to X as
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TY!X(k) = I(Yn;Xn+1|X(k)
n ), (2.10)

where there are n past variables in the target process, k of which can be observed.

By conditioning on the target process’ past, TE quantifies information after accounting for both re-

dundancy and synergy between the source variable and target past. An observer therefore particularly

captures information about state transitions xn ! xn+1 provided by the source variable only. Arguably

this makes TE an effective measure of ‘transfer’ from the source variable in particular.

The above definition of information transfer can be extended to account for the effects of redundancies

or synergies between the source variable and other processes’ variables in the system. This is done by

conditioning on the other processes’ variables too. This form is called conditional transfer entropy and

is defined from Y to X as

TY!X(k) = I(Yn;Xn+1|X(k)
n , Zn), (2.11)

where Zn is a variable in another distant process Z (Bossomaier et al., 2016). Note that any number

of variables from distant processes may be conditioned on. By accounting for the new redundancies

and synergies, this form proves valuable in identifying information transfer in a multivariate system.

For example, consider an informational pathway Y ! Z ! X. Conditional TE from Y to X would

accurately quantify less information transfer given knowledge of a variable in Z, compared to the stan-

dard pairwise TE from Y to X alone. Indeed, in a complex system with many processes conditional

TE would in theory be able to accurately quantify information transfer from each source to each target

in the context of every other distant variable. This property of conditional TE forms the foundation of

the effective network inference algorithm which evaluates multivariate information transfer in a com-

plex system (Novelli et al., 2019). Further details on how conditional TE is used in effective network

inference are in section 2.5.

The final key step to information processing, information modification, has proven difficult to identify

in a complex system using the present information theoretic measures and is an area of ongoing research

(Lizier et al., 2013). Current work suggests that an observer’s question here should be about how infor-

mation sources are combined leading to unexpected changes to stored and/or transferred information.

That is, information modification should be identifiable by some nontrivial synthesis of stored and/or
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transferred information that is juxtaposed to the typical reduction in uncertainty due to a ‘simple’ look

up of stored information or a trivial collision-like event of a source with a target. However defining what

constitutes a nontrivial synthesis is difficult. Lizier et al. (2013) suggested measuring specifically any

synergistic contribution of informational sources to a target variable (that is, excluding sources’ unique

or redundant effects). While intuitively well principled, this leads to a notion of information modification

that is not mutually exclusive with information transfer, since measuring the latter has so far included

synergistic effects within it. There is no clear consensus on whether information modification may truly

be considered mutually exclusive with transfer or not (Flecker et al., 2011).

In contrast, the explained definitions of active information storage and information transfer in the con-

text of distributed information processing are well established. AIS was estimated from voltage-sensitive

dye imaging data of neuronal populations in the cat and could identify neuronal preference for certain

stimuli, neuronal surprise upon stimulus change, and neuronal encoding of an ongoing abstract stim-

ulus in spite of local random changes to the stimulus (Wibral et al., 2014). Meanwhile, TE identifies

expected information transfer in modelled spiking neural networks with known causal sources (Shorten

et al., 2021). Moreover, TE was recently used to quantify information transfer in developing biologi-

cal neural cell cultures and results reflected informational specialisation of neurons over time (Shorten

et al., 2022a). Section 2.4 explains how transfer entropy was able to be estimated in these studies from

recordings of spatiotemporal dynamics in continuous-time.

Measure Formula

Active Information Storage AX(k) = I(X(k)
n ;Xn+1)

Transfer Entropy TY!X(k) = I(Yn;Xn+1|X(k)
n )

Conditional Transfer Entropy TY!X(k) = I(Yn;Xn+1|X(k)
n , Zn)

TABLE 2.2. Information theoretic measures in distributed information processing

The established measures of information processing that can be applied to complex systems are sum-

marised in Table 2.2. A limitation to the present measures is that it is sometimes unclear how to apply

them to emergent macroscopic structures that have been observed to be relevant to information pro-

cessing. For example, the information stored by a heteroclinic cycle (Rabinovich et al., 2001) or the

information transferred from a bump attractor to some target neuron(s) (Wimmer et al., 2014). These

emergent structures can form a coherence beyond which neurons make up those structures (Keane and
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Gong, 2015), and so uncertainty reductions due to the structures themselves cannot be estimated by

considering the state changes of specific neurons alone. Instead, estimating information here would re-

quire an understanding of the possible state configurations of the macroscropic structures, and therefore

specific tailoring to each context.

The following section will address how other approaches to understanding neural information processing

may aid the development of information theoretic measures.

2.3 Complementary methods in studies of neural information processing

This section outlines various approaches to understanding how neuronal populations process information

and discusses how an information theoretic approach, as described in section 2.2, complements these.

2.3.1 Generative modelling of spatiotemporal dynamics

Using techniques borrowed from statistical physics, spatiotemporal dynamics in the brain can be gener-

atively modeled. For example, O’Keefe and Recce (1993) famously designed a network model that was

able to generate spatiotemporal dynamics similar to hippocampus place cells in rats. They reasoned that

the phase position of a place cell’s spike with respect to background oscillation in the nearby population

encodes the rat’s location in real space. This kind of approach gives us a mechanistic understanding of

neural systems, while writing analogies for how computation might be occurring by identifying ordered,

emergent spatiotemporal dynamics that are controlled by parameters in the generative models. Further,

when the generative models are successfully physically faithful to the underlying system, model param-

eters in living neural systems can be inferred from neuroimaging, and predictions can be made about

what spatiotemporal dynamics might emerge in unique conditions (Miller, 2016).

Describing computation that might be allowed by generated or found spatiotemporal dynamics often

remains speculative although theories can be strengthened by behavioural studies, as was the case in

(O’Keefe and Recce, 1993). Importantly, there is a distinction between explaining what spatiotemporal

dynamics are present in a neuronal population and explaining what information dynamics are present.

An information theoretic approach allows the latter to be quantitatively modelled. It follows naturally

that we should search for information theoretic measures that can capture information storage, transfer

and modification by the various emergent structures found via generative modelling of spatiotemporal

dynamics. Well-established emergent structures include:
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(1) Oscillators (Strogatz, 2000)

(2) Attractors, characterised as fixed-point, cyclic, Milnor measure or strange (Milnor, 1985)

(3) Localised bumps in mean-field models (Wimmer et al., 2014)

(4) Phase transitions between states in balanced networks or networks poised at criticality (Brunel,

2000; Fontenele et al., 2019; Langton, 1990)

An information theoretic approach to quantifying information processing by these structures requires

an understanding of their possible state-configurations. Estimators of information storage, transfer or

modification therefore need to be tailored to each context.

The advantage of adding quantified measures of information to generated models of spatiotemporal dy-

namics was highlighted by Beggs and Plenz (2003). Their study showed that the branching parameter

in feedforward spiking neural networks could be poised at criticality to optimise the mutual informa-

tion between stimulus and neuronal response in an output layer, following an avalanche. By finding

a quantifiable measure of the utility of criticality Beggs and Plenz (2003) appreciably added to our

understanding of neural information processing. Future work under this approach should similarly be

complemented by information theory, while the design of information theoretic estimators should follow

found emergent structures.

2.3.2 Statistical inference of brain function

Statistical inference provides a generic framework for descriptive analysis, hypothesis testing, parameter

prediction and data-driven discovery and generalisation. It is therefore readily applied to functional neu-

roimaging to test hypotheses and build models about brain function (Bzdok and Yeo, 2017). While brain

function usually involves computation of some informational inputs for a task, statistical inferences can

be made about the relationship between spatiotemporal dynamics and brain function without quantify-

ing information at all. For example, Neuper and Pfurtscheller (2001) identified how varying powers

of frequency bands recorded by electroencephalography are correlated to effects on attention during a

variety of cognitive and motor tasks. By measuring behavioural components, brain function is modelled

without quantification of information processing. Statistical inference is also suited to testing the ef-

fects of neural components beyond spatiotemporal dynamics on brain function. For example, varying

neuromodulator levels, drug treatments and genomes (Bzdok and Yeo, 2017). Historically, identifying

statistical significance has been limited to pairwise comparisons despite neuronal populations being a

complex system that leverages multivariate effects (Geerligs et al., 2016). Developments are being made
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however towards more nuanced multivariate inference (Chen et al., 2021), similar to the development of

information theoretic inference outlined in this review.

Statistical inference tools that are often applied to functional neuroimaging include:

(1) Generalised linear models to predict neural response to experimental conditions (Stapleton

et al., 2006).

(2) Granger causality for the estimation of causal influences on spatiotemporal dynamics (Bressler

and Seth, 2011).

(3) Pearson correlation and variants to test for functional connectivity between regions of interest

(Geerligs et al., 2016).

(4) Bayesian methods for statistical inference beyond null hypothesis significance testing. These

are wide-ranging but can be applied to identifying multivariate functional connectivity, pa-

rameter estimation in models of spatiotemporal dynamics, stimulus-response prediction and

stimulus reconstruction (Chen, 2013).

The information theoretic approach is an entirely separate framework that is principled by defining and

quantifying information. It appreciably adds to traditional statistical inference whenever precise changes

in information processing should be identified, which is at least the case in developing a theory of natural

computation (Crnkovic, 2011).

One study by Sharpee et al. (2006) took advantage of information theory’s ability to quantify information

to improve prediction of neural response which is the average spatiotemporal activity as a function of

time, given some set of stimuli. They found that a linear filter of stimuli that maximised mutual informa-

tion between neural response and the output of the filter could predict how neurons in the visual cortex

adapted to stimulus. Quantifying the amount of information encoded by high order sensory neurons

allowed a nuanced statistical model of their spatiotemporal dynamics, highlighting the complementary

nature of these approaches.

This project capitalises on the information theoretic framework to first estimate information transfer

inside neuronal populations recorded in continuous time and then infer a network model of multivariate

information transfer. The estimation of transfer entropy in continuous time was only recently developed

by Shorten et al. (2021) and is explained in the next section, followed by section 2.5 on effective network

inference.
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2.4 Transfer entropy estimation between spikes in continuous time

This section presents the latest developments in estimating transfer entropy between processes that store

events in continuous-time, such as neural spike trains.

As argued by Shorten et al. (2021), the problem in directly using the formulation of TE in Equation 2.10

from section 2.2 is that it forces representations of spikes to be at discrete time indices which requires

some form of binning. Usually, this is done by choosing a time bin width and detecting whether or not

a spike occurred in each bin. This loses a representation of more than one spike occurring within a bin’s

time-frame and of the exact time stamp of each spike.

In the ‘discrete-time’ form, a measure for the average TE as a rate from variables in Y to a variable X

in X can be designed as follows (Spinney et al., 2017).

ṪY!X =
1

�t
I(Xt;Y<t|X<t) =

1

⌧

NTX

t=1

ln
p(xt|x<t,y<t)

p(xt|x<t)
(2.12)

In Equation 2.12, Xt is the current variable of the target while X<t and Y<t are the target and source

histories. xt, x<t and y<t are the respective realisations, i.e. observed samples from each process. �t is

the length of time between samples, ⌧ is length of the time series and NT is the number of time samples.

In the discrete-time form, the rate converges to true TE with infinitely small bin width when the under-

lying process is discrete. However, when the underlying process is continuous, the estimated value is

not guaranteed to converge to the true value in the presence of infinite data (Shorten et al., 2021). Since

spikes can occur at any point, neural spike trains do indeed form continuous processes.

Shorten et al. (2021) further highlighted that an estimator in discrete time is not able to estimate TE

in small time scales and large time scales at once. Choosing a small bin size means that a smaller

embedding length, i.e. the number of historic values we would like to observe in each process, is

required to avoid the risk of undersampling. Conversely, choosing a large embedding length can only be

done with large bin size. Being unable to observe small and large time scales at once is particularly an

issue when the tool being used to observe spikes has a high sampling rate. Taking advantage of a high

sampling rate would prevent estimating over larger time scales. Worse, Shorten et al. (2021) empirically

showed that choice of bin size leads to inconsistent estimates.
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This motivates an estimator for transfer entropy that does not require binning and is instead able to rely

on observations of spikes in continuous time. Shorten et al. (2021) presented the following ‘continuous-

time’ formulation for the average transfer entropy rate from variables in Y to a variable in X.

ṪY!X = lim
⌧!1

1

⌧

NXX

i=1

ln
�x|x<t,y<t

⇥
x<xi ,y<xi

⇤

�x|x<t

⇥
x<xi

⇤ (2.13)

In Equation 2.13, ⌧ is the time series length and NX is the number of events in the target process. In the

denominator, �x|x<t
is the instantaneous firing rate of the target process at sample x when conditioned

on this realisation’s history. The
⇥
x<xi

⇤
indicates to only sample history at the time points xi of the

events in the target. Equivalently in the numerator, the � expression is the instantaneous firing rate of

the target process at sample x when conditioned both on target and source history. The observer only

samples the history of target and source at the time points xi of events in the target.

(Shorten et al., 2021) formally showed that the continuous-time estimator converges to the true rate of

transfer entropy in the presence of infinite data when the underlying system is continuous. Convergence

also appears faster than in the discrete-time estimator and with less bias that was inherent due to binning.

Further, a computational advantage arises. This is because the continuous-time formalisation of the

average rate of TE in Equation 2.13 allows encoding spike event times in inter-spike intervals, such that

an observer might jointly estimate in small and large time scales. Finally, computation is also improved

by only needing to sum over spiking events rather than over every time step.

Promising results have been found using the continuous-time estimator. Shorten et al. (2022a) was able

to infer a functional network, i.e. a directed graph containing significant pairwise information transfer

between nodes, from in vitro imaging of developing neural populations. The functional network of infor-

mation flow characterised nodes according to ratios of in-degree and out-degree. Shorten et al. (2022a)

classified these nodes as information ‘sinks’, ‘mediators’, and ‘receivers’, and found that the specialised

roles were maintained from a surprisingly early point in development. Furthermore, the inferred infor-

mation flow network was aligned with expectations from a theory of spike-timing dependent plasticity

(Caporale and Y, 2008) and a generative model using Izhikevich neurons (Izhikevich, 2003).

The continuous-time estimator has so far been able to quantify information processing in neuronal pop-

ulations in vitro, delivering results that align with the expectation that early developing cell cultures
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should improve their capacity for information transfer over three to four weeks. This project now lever-

ages the high sampling rate and fine spatial scale offered by modern extracellular imaging to apply the

continuous-time estimator to neuronal populations in vivo. Pairwise information transfer between spike

trains will be estimated following the approach used by Shorten et al. (2021).

The estimator will also be used in combination with effective network inference which finds a network

model of multivariate information transfer. The new estimator overcomes limitations in inference from

spike trains, not only by operating in continuous time, but also by reducing dimensionality so that TE can

be estimated even when conditioning on a substantial number of source processes. The following section

addresses details of the algorithm that highlight the significance of conditioning on a large number of

source processes.

2.5 Effective network inference

This section formally describes what effective networks are and their usefulness as a tool for evaluating

multivariate information transfer.

An effective network represents the multivariate information transfers that occurred inside a complex

system during some window of observation (Novelli et al., 2019). The network model is a directed

graph, where each node is a process inside the complex system. During observation, each node’s parent

set formed a significant rate of multivariate information transfer to that node. The notion of significance

here is twofold (Shorten et al., 2022b). Firstly, the observed activity of the parent set for each node

maximally reduced uncertainty about target states. Any removal of source variables underlying a parent

set would increase uncertainty about their target. Secondly, each parent set is minimal in the sense that

addition of further source variables would not reduce uncertainty any further.

Since an effective network reflects information transfer during observation, it may be considerably dif-

ferent to the underlying structural network. That is, the same neuronal population with relatively fixed

connectivity will yield varying effective networks under different informational inputs (Friston, 2011).

Effective networks therefore offer insight into how a network structure may process information differ-

ently under varying tasks or conditions.

The alternative, naive approach to inferring information flow in a neuronal population would be to

measure the pairwise TE between all neuronal processes (Bossomaier et al., 2016). For example an
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observer may determine the significance of each pairwise transfer, i.e. probability of obtaining this value

from a null distribution where correlation between source and target are destroyed, then add directed

links for low enough p-values. However, a pairwise approach (sometimes called ‘functional network

inference’) does not measure synergies or redundancies between sources. The latter are quantified by

conditional TE, as explained in section 2.2.

Conditional TE could be leveraged by testing for significant transfer between each source-target pair,

conditioned on all other distant variables (Novelli et al., 2019). However, even with the computational

advantages of the recent estimator developed by Shorten et al. (2021), conditioning on all other distant

variables at once quickly increases dimensionality and the risk of under-sampling.

This arrives at the current approach to find the minimal parent set for each node that maximally explains

their target’s state transitions. Importantly, the minimal parent set is well principled to identify the

‘effective coupling’ between source and target variables in a multivariate setting, as was described by

Friston (2011). Significance testing under this approach requires measuring TE for each source-target

pair conditioned only on other variables underlying the target’s parent set. The challenge is to first

find the parent set to condition on. A greedy approach adding source variables to a conditioning set,

explained in the next subsection, has proven able to to converge to the true parent set for each target with

infinite data and stop choosing parents when the statistical power of the data is exhausted (Lizier and

Rubinov, 2012).

The continuous-time estimator for TE is well suited to the greedy approach (Shorten et al., 2022b). It

is able to operate on small and large time-scales at once without the need to embed process histories

with both small and large bin widths. Multi-bin width embedding leads to an explosion of the state

space needed to estimate conditional probability distributions for each target process, as the number of

variables to condition on increases. The need for all time scales is particularly true in spike trains where

correlation between events extend over hundreds of milliseconds (Rudelt et al., 2021). Simultaneously,

correlations to neural function can be inferred at the sub-millisecond level.

This project applies the continuous-time estimator in conjunction with the below greedy algorithm for

effective network inference (Shorten et al., 2022b). In accordance with the new estimator, process

histories are embedded using inter-spike intervals.
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2.5.1 Greedy algorithm

Given a set of spike trains R, this algorithm finds a minimal parent set of source processes SX for

each target X in R that can maximally explain target state. Inference of parent set for each target is

independent and may be completed in parallel.

For each target X, first determine the set of target history intervals hX that will be used to condition

on when calculating multivariate information transfer. This can be thought of as finding the target

embedding that would maximise its active information storage.

(1) Initialise hx to store the most recent target interval.

(2) Estimate the average MI a between target state and the interval previous to the earliest interval

in hx, conditioned on intervals already in hX .

(3) If a is significant (tested using a surrogate generation method described in subsubsection 2.5.1.1),

then add the tested interval to hX and go back to step 2.

(4) Otherwise, stop adding to the number of target history intervals.

Once the embedding for the target history has been chosen, we can begin determining intervals from all

other source processes that offer significant multivariate transfer to this target.

(1) Initialise a conditioning set cX which for each process other than the target will store the source

intervals that offer a significant rate of multivariate transfer.

(2) Iterate over all candidate source processes. For candidate source Y, estimate the average rate

of TE between target state i and the most recent interval from Y not already in cX , conditioned

on all intervals already in cX . Note that the target history is embedded using hX .

(3) Select the candidate source interval which offered the maximum conditional TE. Test its sig-

nificance using the maximum statistic test described in subsubsection 2.5.1.2.

(4) If significant, add this source interval to cX . Go back to step 2.

(5) Otherwise, stop adding source intervals to the conditioning set.

Once we have a conditioning set for this target, we can prune from the added source intervals. We prune

until we are only left with source intervals with significant multivariate transfer to the target, when

conditioning on all intervals in the conditioning set.
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(1) Iterate over all sources that had an interval in cX . For source Y with an interval in cX , es-

timate the average rate of TE between target state i and the last added interval from Y in

cX . Test the significance of this estimate using the surrogate generation method explained in

subsubsection 2.5.1.1. If insignificant, remove this source interval from cX .

(2) As long as there was at least one insignificant rate of multivariate transfer found between a

source interval in cX and target state, go back to step 1.

(3) Otherwise, stop pruning source intervals from the conditioning set.

The parent set SX is finally determined by including any processes that had an interval left in cX .

2.5.1.1 Testing for non-zero TE using surrogates

To test the significance of an obtained TE value with respect to the state space of realisations for source,

target and conditional processes, a surrogate generation method may be used. The following approach

is summarised from Shorten et al. (2021).

Generate Nsurrogates surrogate processes that conform to the null hypothesis of zero information trans-

fer, then estimate TE on each of the generated surrogates. The p-value used for significance testing

is then the proportion of surrogate estimates that are greater than or equal to the original obtained TE

value. The p-value therefore estimates the probability that we would observe a value of TE greater than

or equal to the original estimation, under the null hypothesis of observing zero TE.

2.5.1.2 Maximum statistic test

The standard surrogate generation approach to test for non-zero TE fails when adding source intervals

to the conditioning set. This is because finding conditional TE of all candidate source intervals, before

determining the significance of the maximum estimate leads to a multiple comparisons problem (Shorten

et al., 2022b).

In order to compensate for this, for each candidate source interval, first generate Nsurrogates surrogate

processes as normal. Then, for i 2 {1, 2 . . . Nsurrogates} find the maximum estimate for each i across all

candidate source intervals. The null distribution is therefore made up of Nsurrogates maximum values,

and the p-value calculation continues as normal. This essentially replicates the selection of maximum

candidate source, inside the generation step.
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This concludes this review’s explanation of effective network inference. In this project, this approach

will be used to search for multivariate transfer that explains effective coupling between layers in the

visual areas of the mouse brain. By being principled in the distributed information processing found in

dynamic complex systems, this approach should appreciably increase understanding of visual processing

by adding a quantified measure of transfers. The next section presents where the expectations about

visual information processing that are evaluated in this project come from.

2.6 Information processing in visual areas

This section summarises the consensus on visual information processing, which has been arrived at us-

ing statistical inference of brain function for the most part and sometimes generative modelling of spa-

tiotemporal dynamics (Marr, 1982; Adelson and Bergen, 1985). As outlined in section 2.3 these general

approaches are not principled in quantifying information. Statistical inference of functional and effective

connectivity can offer evidence of information processing (Friston, 2011) but without quantifying infor-

mation storage, modification or transfer. Furthermore, in deeper brain areas where the spatial resolution

of functional neuroimaging has been limited, theories of visual processing might turn to structural imag-

ing (Bzdok and Yeo, 2017). Structural imaging is poorly principled to reflect information processing

since the same structure can give rise to varying spatiotemporal dynamics depending on perturbations

(Friston, 2011).

The primary visual cortex (V1), like all areas in the neocortex, is organised into six functional layers of

densely connected neurons (Harris and Shepherd, 2015). These layers can be thought of as horizontal

sheets. The neocortex is further organised, by vertical columns of excitatory neurons interconnected

across layers, called local excitatory circuits. Functional connectivity inside local excitatory circuits is

well-understood but how inhibition is controlled is less easy to infer from functional imaging (Logothetis

and Wandell, 2004).

The visual informational pathway originates at the retina and projects to V1 via a subcortical structure

called the thalamus (Bear et al., 2015). The dominant projection from the thalamus to V1 is to layer 4

and broadly maintains a topographic organisation from the retina. This phenomenon is called ‘retino-

topy’ and is thought to lead to feedforward convolution-like processing of the visual field (Lamme and

Roelfsema, 2000). For example in cats, neurons from the lateral geniculate nucleus of the thalamus

(LGN) have receptive fields that are spatially aligned and circular; they fire when a stimulus enters or
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leaves some location in the visual field. The layer 4 cells in turn respond to orientations of stimuli by

integrating LGN inputs (Clay Reid and Alonso, 1995).

Thalamic inputs to V1 fall under two broad classes, originating from core-type and matrix-type neurons

(Jones, 2001). Core-type are thought to contain ‘rapid’ sensory information that leads to quick feed-

forward processing and target layer 4. Matrix-type instead target layers 1 and 5, though the quality of

information being processed is poorly understood (Clascá et al., 2012). Visual input is thought to be the

only sensory modality being processed by layer 4, since there is no variability that would be expected

due to modulation by other modalities (Hansen et al., 2012).

Layer 4, in turn, asymmetrically projects heavily to layers 2, 3 and 5 (Harris and Shepherd, 2015). Harris

and Shepherd (2015) reviews how cells in these layers are specialised in terms of morphology, physi-

ology and average spike rate, which leads to the assumption of their information processing specificity.

Layer 1 contains inhibitory neurons and layers 2 - 6 contain intratelencephalic (IT) neurons. Further,

pyramidal tract (PT) neurons are found in layer 5B and corticothalmic (CT) neurons are contained by

layer 6.

Within a local excitatory circuit, each class of neurons forms recurrent connections with themselves

(Thomson and Lamy, 2007). Between classes, connections are asymmetrical. IT neurons consistently

form ‘exits’ in a column, projecting to other cortical areas.

IT neurons in layers 2 and 3 are thought to code sparsely in temporally and spatially specific bursts

(Petersen and Crochet, 2013). This is in spite of being heavily innervated. Petersen and Crochet (2013)

suggests this is due to a high stimulus selectivity and that a reduction in state space due to sparse coding

is useful for associative learning.

After being innervated by layer 4, layers 2 and 3 in turn have a major descending axonal projection to

layers 5A and 5B. PT neurons in Layer 5B are thought to exhibit dense coding, since they are highly

recurrent and have high firing rates (Peters and Kara, 1985). Harris and Mrsic-Flogel (2013) suggested

that dense coding allows encoding information using variation of firing rates.

Layer 5 in turn projects to subcerebral regions, back to the thalamus, as well as to other ipsilateral

cortical areas (Harris and Shepherd, 2015). There are few return projections to the local excitatory

circuit, though some feedforward to layer 6. Feldmeyer (2012) suggests that layer 5 can be thought of as

the most downstream part of the circuit, integrating results of processing by the local excitatory circuit
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with thalamic input and broadcasting results, mainly to subcerebral structures and also other cortical

areas.

Layer 6 is somewhat innervated by layer 4, layer 5, and even the thalamus but is dominated by long-

distance inputs from across the neocortex and claustrum (the ‘wall’ of the neocortex) (Stepanyants et al.,

2009). IT neurons here have horizontal projections that exit their column and even V1. CT neurons

here project back to thalamic nuclei though are thought to be modulatory rather than drivers (Guillery

and Sherman, 2002). Rather than closing the thalamocortical loop, CT neurons in layer 6 are thought to

integrate long-range signals to modulate thalamocortical activity.

Within the local excitatory circuit however, specialised function of layer 6 CT neurons is difficult to

identify. They have sparse, locally ascending projections to layers 5A and 4 (Fitzpatrick, 1996). They

are remarkably silent during various tasks, and have significant delays in their projections (up to 30

ms). Vélez-Fort et al. (2014) found that in mice these neurons predominantly inhibit all other layers via

inhibitory neurons called parvalbumin-positive interneurons.

For completeness, note layer 1 is sparsely populated by neurons and largely contains inhibitory neurons

(Cruikshank et al., 2012). It is not heavily innervated by any particular layer but receives inputs from

thalamic matrix-type neurons and nearby layer ITs. Interestingly, layer 5 ITs have thin-tufted apical

dendrites that extend to layer 1, allowing layer 1 to innervate layer 5. There may be sparse projections

from layer 1, to all other layers, in each column.

In summary, functional connectivity within local excitatory circuits suggest hierarchical information

processing, first from layer 4 to 2/3 and 5, then from 2/3 to 5. Broadcasting out of the column probably

occurs in layers 5 and 6. Integration probably occurs in layer 6. Latency of functional activity between

layers suggests that feedforward passes of information through this hierarchy occurs rapidly in response

to visual stimulus, while recurrent transfers occur slowly (Lamme and Roelfsema, 2000). The rapid

‘sweep’ leverages tuning by successive neurons in the hierarchy, for example to orientation, direction and

motion. The slow feedback is thought to be required for dynamic updates to tuning allowing selective

visual attention, for example to separate objects from background scenery.

This review of visual areas informs the hypotheses about visual information processing that are presented

in Chapter 3. This will followed by Chapter 4 which tests expectations before evaluating the review’s
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overarching argument. This is that the information theoretic approach guided by complex systems the-

ory appreciably adds to understanding of neural information processing beyond functional analysis, by

quantifying information.



CHAPTER 3

Experiments

This chapter describes what the hypotheses about visual information processing were and how they were

tested within the available data.

3.1 Hypotheses

There are three major hypotheses (H1-3) that arise from our survey of the literature on information

processing in the visual areas of the mammalian brain. These are listed below.

Note that layers 2 and 3 inside the mammalian cortex are anatomically similar and are labelled together

in our dataset. They will be referred to as layer 2/3.

H1. Inside local excitatory circuits, otherwise called ‘columns’ of the primary visual cortex, layer

4 is a major information source to other layers. This would be supported by:

(1) High proportion of significant pairwise transfer entropy from layer 4 to all layers.

(2) Low ratio in layer 4 of incoming to outgoing edges in an effective network.

H2. Layer 2/3 forms a sparse-coding integration station, primarily driven by layer 4. Specialised

neurons in layer 2/3 are thought to code sparsely in that they fire less often but in spatiotem-

porally specific bursts. Sparse coding might correlate to a high information transfer per firing

event. This would be supported by:

(1) High proportion of significant pairwise transfer entropy from layer 4 to layer 2/3.

(2) High average transfer entropy per firing event for connections originating in layer 2/3.

(3) Higher proportion of significant edges from layer 4 to 2/3 than from other layers to 2/3 in

an effective network.

(4) High proportion of significant transfers within layer 2/3.

33
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H3. Layer 5 is a dense-coding integration station and information sink primarily driven by layer 4

and somewhat driven by layers 2/3. Specialised neurons in layer 5 are thought to code densely,

that is firing often in less specific spatiotemporal locations. These neurons offer few return

projections to other layers, are highly recurrent and have the highest firing rate of all excitatory

cell classes. This would be supported by

(1) High proportion of significant pairwise transfer entropy from layer 4 to 5, and from layer

2/3 to 5.

(2) High average rate of transfer entropy within layer 5, compared to within other layers.

(3) Highest proportion of edges from layer 4 to 5, with some edges from layer 2 & 3 to 5 in

an effective network.

Some minor hypotheses (H4-7) that were either less novel or expected to be challenging to evaluate

within our dataset are listed below.

H4. Each layer in a local excitatory circuit of the primary visual cortex forms a computationally

specific module. This is suggested by most layers containing physiologically specialised cells

with recurrent connections. This would be supported by

(1) High rate of average transfer entropy from each layer to itself.

H5. Layer 5 broadcasts outside of the local excitatory circuits in the primary visual cortex to visual

association areas. Layer 5 pyramidal tract neurons are known to physically target ipsilateral

cortical areas. This would be supported by:

(1) Some proportion of significant pairwise or multivariate transfer entropy from layer 5 in a

V1 probe to neurons sampled by a probe through a visual association area.

H6. Layer 6 broadcasts information from the column to horizontally distant targets. This is sug-

gested by intractectal neurons in layer 6 being driven by intratectal neurons in layers 5 and 6.

Layer 6 is then observed to target other columns horizontally as well as visual association areas

outside the primary visual cortex. This would be supported by:

(1) High proportion of significant pairwise transfer entropy from layers 5/6 to 6 inside V1

columns.

(2) High proportion of significant edges from layers 5/6 to 6 inside effective networks of V1

columns.

(3) Some significant pairwise or multivariate transfer entropy from layer 6 in one column to

layers 5 and 6 in other columns of V1.
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(4) Some significant pairwise or multivariate transfer entropy from layer 6 in V1 to neurons

sampled by a probe through a visual association area.

H7. Layer 6 in the primary visual cortex integrates information from distant sources. The reason-

ing for this hypothesis is that corticothalamic neurons in layer 6 are primarily innervated by

neurons in higher order ipsilateral cortical areas and not neurons inside the same column. How-

ever, corticothalamic neurons have often been observed to be quiet in activity for entire tasks

and could be considered an ‘optional’ integration step. This hypothesis would be supported

by:

(1) A high proportion of pairwise or multivariate transfer entropy from a visual association

area to layer 6 in the primary visual cortex,

(2) Possibly relatively low rate of transfer entropy from layer 6 to itself, suggesting corti-

cothalamic neurons were quiet during observation.

3.2 Data

The dataset used in this project was first published by Stringer et al. (2019). The original dataset contains

the spike times of several hundred cortical neurons that were recorded via high density extracellular

imaging using silicon probes inserted into three mice, in vivo. These probes are a somewhat recently

developed technology called ‘Neuropixels’ and offer 384 electrode sites on a 70 x 100 x 20µm shank

(Jun et al., 2017). Stringer et al. (2019) inserted eight Neuropixels probes in each mouse to target various

cortical areas. During recording, the mice were in a light-isolated enclosure, head-fixed by an apparatus,

with front-paws free to move on a rolling ball. They were presented with three computer screens though

Stringer et al. (2019) only published Neuropixels recordings during spontaneous activity. This is when

the screens were black.

Spike times in the dataset are already spike-sorted, meaning that they have been labelled as belonging

to different neurons. Each labelled neuron is already estimated to be located inside an anatomical brain

area. Note that the mammalian cortex has a layered structure, where most areas of the cortical plate have

six identifiable layers within them. The high resolution of Neuropixels probes allows each neuron to be

estimated as being located inside a particular layer of each cortical area. Layers 2 and 3 are similar in

anatomy and have been labelled together as layer 2/3.
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For this project, we selected probes that recorded neurons from the visual areas of the mouse brains.

This led to two mice being used (named Waksman and Krebs in the original dataset) each with four

probes selected. The locations of these probes are listed in table 3.1. Recorded layers are also noted in

table 3.1 on the right.

In summary, the dataset used is made up of arrays (n=446) containing timestamps of spike events, where

each array is belongs to some neuron that is located inside a layer of some cortical area related to visual

processing. The number of neurons recorded by each probe are reported in table 3.1. Note that probe 7

in Waksman goes through two areas and so is intentionally listed twice.

Mouse Probe Brain structure Allen Brain Atlas Acronym

Waksman Probe 3 (n=104) Left Primary Visual Cortex VISp[2/3,4,5,6]

Probe 6 (n=6) Right Anterior Visual Area VISa[4,5]

Probe 7 (n=66) Left Rostrolateral Visual Area VISrl[4,5,6]

Probe 7 (n=77) Dorsal LGN of Thalamus LGd[-co,-sh]

Probe 8 (n=60) Right Primary Visual Cortex VISp[2/3,4,5,6]

Krebs Probe 3 (n=52) Right Primary Visual Cortex VISp[2/3,4,5,6]

Probe 4 (n=44) Left Primary Visual Cortex VISp[5,6]

Probe 7 (n=10) Right Primary Visual Cortex VISp[5,6]

Probe 8 (n=27) Left Primary Visual Cortex VISp[4,5,6]

TABLE 3.1. Locations of Neuropixels probes used in each mouse.

3.3 Methods

3.3.1 Pairwise transfer entropy estimation in continuous time

To investigate the hypotheses about information transfers inside columns of the primary visual cortex,

first pairwise transfer entropy was estimated between neurons inside each probe going through this area.

The estimator for transfer entropy between events in continuous time as first reported by (Shorten et al.,
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2021) was used. It is important to note that the continuous-time estimator returns a rate of transfer

entropy between two spike trains. It estimates the contribution of each source-target spike pair to the

total information transfer and divides this by the length of observation. The rate of transfer entropy

reported therefore captures information transfer over the whole observation window.

To standardise the statistical power drawn from each pair of neurons inside a probe, exactly ntarget spikes

spikes were sampled from each target neuron. ntarget spikes for each probe are listed in table 3.2 and

were chosen by considering the minimum number of spikes recorded across most neurons in each probe.

Source spikes were sampled such that they occurred only within the window of target spikes. If the

number of source spikes fell below one hundred for any pair of neurons, the pair was skipped.

Mouse Probe ntarget spikes

Waksman Probe 3 VISp 1500

Probe 6 VISa 800

Probe 7 VISrl 1000

Probe 7 LGd 3000

Probe 8 VISp 1000

Krebs Probe 3 VISp 995

Probe 4 VISp 700

Probe 7 VISp 700

Probe 8 VISp 800

TABLE 3.2. Number of target spikes used during pairwise TE estimation in each probe.

The number of surrogate processes to generate to test the null hypothesis of no transfer between a source

and a target, nsurrogates, was chosen to be 100 for all source-target pairs.

In order to indicate the relative degree of information transfer between layers, the proportion of sig-

nificant transfers to the total number of tested pairs of cells across layers was calculated. The average

rate of transfer between layers was also calculated after zeroing source-target pairs with non-significant

transfers.
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In order to test the sparse vs dense-coding nature of layers, the rate of transfer per source spike was

also calculated. This was done by dividing the total contribution of each source spike with each target

spike by the number of source spikes. Source-target pairs were then averaged across layers again, after

zeroing non-significant transfers.

To investigate the hypotheses about information transfers between columns inside the primary visual

cortex, the above methods for pairwise transfer entropy estimation was repeated, only using pairs of

cells between probes that were in V1 of the same mouse.

In addition, pairwise transfer entropy was estimated between primary visual cortices and association

areas, wherever probes were in the same hemisphere of the same mouse. Since we had spiking data

from the thalamus, this was included here, to test for any drivers to or targets from neurons recorded in

visual areas. ntarget spikes for probes through these areas outside the primary visual cortex are included

in table 3.2.

3.3.2 Effective network inference

In order to test the hypotheses about information processing by columns inside the primary visual cortex

under a multivariate approach, we next inferred effective networks of neurons in probes through this

area.

The algorithm presented in section 2.5 was used in conjunction with the continuous-time estimator,

following the same approach as Shorten et al. (2022b). Nsurrogates was chosen to be 100 for all source-

target pairs. The number of nearest neighbours to use in each conditional TE estimation was 10. The

number of nearest neighbours to consider when using the local permutation method to create surrogates

was 20 (Shorten et al., 2021).

Due to limited neurons in some probes, we inferred effective networks in each of Waksman’s left and

right V1, and Krebs’ right V1 (via probe 3). These were the only probes through the primary visual

cortex with cells in all layers 2/3 - 6.

Since effective network inference only infers significant transfers where statistical power can still be

drawn from source-target pairs, any number of spikes for each target can be used during estimation.

Where possible we used all target spikes, however to limit computation time a max number of target

spikes was set to 3000. That is, all target spikes beyond the first 3000 were excluded. Source spikes
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were sampled such that they fell inside the window of target spikes. If any source had less than ten

spikes available, they were excluded from inference for that target.

Inference was completed in parallel for each target. Where inference for a target exceeded 60 to 80

hours, computation was sometimes completed by limiting the number of intervals that could be added to

the conditioning set before continuing to pruning. Any inference of sources for targets that were limited

in this way (n=42) are listed in Table A.1 in the appendix.

In order to test hypotheses about information transfers between columns inside the primary visual cortex,

the above methods for effective network inference were repeated only using all cells for probes going

through V1 of the same mouse.

3.3.3 Code availability

All information theoretic estimators and inference algorithms used are from the Java Information Dy-

namics Toolkit (JIDT) (Lizier, 2014). Experimental scripts are available at github.com/preqon/spikes-

information-transfer. JIDT is available at github.com/jlizier/jidt.



CHAPTER 4

Results

This chapter presents the results and discusses them in relation to expectations from the literature on

visual information processing. The overall information theoretic approach is then evaluated in relation

to increasing understanding of neural information processing. Future directions are included at the end

of the chapter.

4.1 Intra-column information transfer in V1

4.1.1 Layer 4 is not always the primary source of information to other layers

To test whether or not layer 4 is a primary source of information to other layers (H1), we calculated the

proportion of significant transfers to total possible transfers from layer 4 to other layers. Proportions for

the pairwise analysis are presented in figure 4.1.

Inside Waksman’s right primary visual cortex, layer 4 indeed shows higher proportion of significant

pairwise transfers to all layers. However this is by no means a consistent story in all recordings of the

primary visual cortex in the two mice. In the opposite hemisphere of Waksman itself, none of the 22

sampled cells in layer 4 offered any transfer to cells in other layers. Instead, both layer 5 and 6 were the

primary source of information to all other layers, including themselves. The pairwise analysis suggests

that layer 4 is not always the primary driver to a column in V1 and that higher order layers can instead

become primary sources to lower order layers.

A biologically plausible situation where layer 4 may not be driving other cortical layers would be when

layer 4 itself is receiving less thalamic input that maps from one area of the visual field (Lamme and

Roelfsema, 2000; Harris and Shepherd, 2015). In other words, where layer 4 was not a primary source, it

is possible that no stimulus may have been present in the area of the mouse’s visual field corresponding

to the recorded column. To add credence to this suggestion without being able to test it directly, we

40
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(A) Waksman left primary visual cortex. (B) Waksman right primary visual cortex.

(C) Krebs left primary visual cortex (a) (D) Krebs right primary visual cortex (a)

(E) Krebs left primary visual cortex (b) (F) Krebs right primary visual cortex (b)

FIGURE 4.1. Proportion of significant pairwise information transfers to total possible
links between layers inside the primary visual cortex.
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considered transfers from thalamic cells to the primary visual cortex. The dataset offered one recording

of thalamic cells, inside Waksman’s left dorsal geniculate nucleus. Indeed, none of the 77 thalamic core

and shell cells recorded here offered significant pairwise transfer to layer 4 cells of Waksman’s left V1,

where in turn layer 4 is not a primary source. The absence of transfer from the thalamus may be because

there was no stimulus in the relevant area of the visual field. Although, the thalamic cells from the same

hemisphere of the same mouse, were recorded by a different probe to the probe through V1. With this

distance, there may be enough hidden processes between the recorded cells to remove possibility of

transfer.

Meanwhile in the other mouse Krebs, the proportion of significant pairwise transfers are consistent with

the case in Waksman’s left V1 where layer 4 is not a primary source. In one probe through Krebs’

right V1, layer 4 does offer information transfer to all other layers, however the primary sources of

information are layers 5 and 6. The dataset did not offer recordings from thalamic cells inside Krebs to

test whether or not a plausible reason for this was lower thalamic drive.

Note that blanks in Figure 4.1 reflect no sampled pairs. While three probes in Krebs do not sample cells

from all layers, they still begin to suggest transfers where layers 5 and 6 were dominant sources.

H1 can of course also be evaluated by considering multivariate transfer. A multivariate analysis may be

more likely to identify hierarchical processing if this were to exist, since a target of transfer can now be

due to the synergy of multiple processes within one layer. Conversely, a source of transfer is less likely

to be present if that source is redundant in the context of processes between the source and target in the

hierarchy.

Effective network inference was therefore completed inside the three V1 probes that sampled cells from

all layers. The extent to which each layer may be considered a dominant source can be first gleaned by

calculating the ratio of incoming to outgoing edges in each layer (Figure 4.2). Note a whole effective

network is drawn as an example in Appendix A.

Since a ratio less than 1 reflects a layer being more of a source of multivariate transfer than a target, we

observe that layer 4 is indeed a source in Waksman’s left and right V1s. However, layer 4 is not more

dominant as a source compared to other layers in either case. Meanwhile in Krebs’ right V1 layer 4 is

more of a target than a source. In fact, all layers are heavily targeted with the exception being layer 6.

Since layer 6 is a known driver of inhibition within V1 columns, a plausible explanation for this might

be suppression for perceptual selection during this particular period of observation (Wang et al., 2020).
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(A) Waksman left primary visual cortex. (B) Waksman right primary visual cortex.

(C) Krebs right primary visual cortex.

FIGURE 4.2. Ratio of incoming to outgoing edges in each layer from effective net-
works inferred from the primary visual cortex.

The proportion of significant edges to total possible links between layers in the effective networks are

shown in Figure 4.3. Note that even a proportion of 0.01 or higher can be considered a very high propor-

tion of significant transfer. This is because of the maximum statistic test during inference which accounts

for multiple comparisons between candidate source intervals (see section 2.5). Cut-off for significant

p-values is in effect reduced by a factor of however many source processes are being considered. For

these three probes, this leads to the probability of an edge being inferred due to random chance being

between 0.0005 and 0.001.

Similar to the pairwise analysis, Waksman’s right V1 displayed multivariate information transfer that

was most aligned with H1 that layer 4 would be the primary source of information to other layers.

However this was again inconsistent with other probes. The other two probes, from Waksman’s left V1
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(A) Waksman left primary visual cortex. (B) Waksman right primary visual cortex.

(C) Krebs right primary visual cortex.

FIGURE 4.3. Proportion of significant edges to total possible links between layers after
effective network inference inside the primary visual cortex.

and Krebs right V1 showed a largely homogeneous proportion of multivariate information transfer from

each layer. While layer 4 did always show a high proportion of information transfer to other layers in

every effective network, it was not always the primary source.

The homogeneous multivariate transfer challenges our expectation of hierarchical information process-

ing, driven primarily by layer 4. Even if lower thalamic-stimulus turns out to be the reason behind layer

4 not emerging as a primary source, these results find quantified evidence of information processing in

each column during observation. This means that the same laminar structure of the visual cortex that
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has been suggested to best facilitate hierarchical processing (Thomas Yeo et al., 2011) is quite capable

of processing information in a non-hierarchical manner, as reflected by the homogeneous transfers.

The mixed results for H4 highlight how information processing over small windows of observation need

not follow expectations from functional connectivity inferred on average. The above results are observed

in average windows of length 13 min. In a small time frame like this, it is possible for a subset of drivers

in a network to be active. In this case the network would in turn explore only a subset of the state

space of spatiotemporal dynamics. Further, hidden variables in the neuronal population, i.e. activity of

unsampled neurons, may introduce redundancies and synergies that would lead to a different effective

network. However note that, as shown by (Shorten et al., 2022b) the greedy approach is conservative, in

the sense that it infers very few false positives. Nevertheless, for the total state space of spatiotemporal

dynamics offered by a neuronal population to be observed, larger sample size over longer periods of time

are required. Conversely if the goal is to infer information processing on short time scales, observers

should not expect information processing to follow functional connectivity inferred over longer time

scales.

4.1.2 Layer 2/3 is not always driven by layer 4. Sparse coding was not found by transfer

entropy per source spike.

In order to test whether layer 2/3 is primarily driven by layer 4 (H2), we can consider the proportion

of significant pairwise transfers from layer 4 (Figure 4.6, and also the proportion of significant edges

reflecting multivariate transfer in an effective network (Figure 4.3). Inside Waksman’s right V1, both

the proportions of significant pairwise transfers and multivariate transfers reflect that layer 4 was indeed

the primary source to layer 2/3.

However this was again inconsistent with other probes. In the pairwise analysis, Waksman’s left V1

showed no transfer whatsoever from layer 4 to layer 2/3. Krebs’ right V1 showed some pairwise transfer

but layer 4 was not the primary source to layer 2/3; instead layers 5 and 6 were. In the multivariate

analysis, some edges do emerge from layer 4 to layer 2/3 in Waksman’s left V1, however these transfers

homeogeneously emerge across the network. In Krebs’ right V1, layer 6 is notably the primary source

of multivariate transfer to 2/3, while layer 4 is not more of a source than 2/3 and 5.

In Krebs’ right V1, Layer 6 appears as the primary source to 2/3 in the multivariate analysis, while the

pairwise analysis includes both layer 5 and 6 as the primary sources. This is aligned with the earlier



4.1 INTRA-COLUMN INFORMATION TRANSFER IN V1 46

suggestion that layer 6 may be controlling informational feedback for perceptual selection, in Krebs’

right V1 (Wang et al., 2020). Since feedback to layer 2/3 may be via layer 5 (Fitzpatrick, 1996), this

explains the pairwise analysis failing to identify this redundancy.

(A) Waksman left primary visual cortex. (B) Waksman right primary visual cortex.

(C) Krebs right primary visual cortex.

FIGURE 4.4. Average pairwise transfer entropy per source spike between layers inside
the primary visual cortex.

In order to test whether layer 2/3 offers specialised sparse coding (H2), we calculated the average pair-

wise transfer entropy per source spike between layers. As shown in Figure 4.4, layer 2/3 was not

observed to offer a higher transfer entropy per source spike compared to transfers originating in other

layers. This is not evidence against sparse coding, nor can the validity of calculating average TE per

source spike be tested with this sample size. It is possible however that average TE per source spike may

not be the most principled estimation of sparse coding. An example of an alternative approach would
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be to estimate the contribution of each burst event to information transfer instead of each spike event

(Shorten et al., 2021).

H2 also proposed that layer 2/3 was an intermediary integration station for information and that this

might be observed in a higher proportion of significant transfer in layer 2/3 to itself. In the pairwise

analysis, layer 2/3 to itself does not stand out compared to other layers to themselves. This is the same

in the multivariate analysis, apart from Waksman’s left V1. Here, multivariate transfer was homogeneous

except for layer 2/3 to itself, which displayed a very high proportion of significant transfer. The ability

for layer 2/3 to integrate informational inputs from the local excitatory circuit is observed here, but not

as an intermediary stage between layers 4 and 5.

4.1.3 Layer 5 is not always driven by layer 4 and dense-coding is not captured by

average rate of transfer entropy

In order to test whether layer 5 is primarily driven by layer 4 and then in part by layer 2/3 (H3) we can

consider both the proportion of significant pairwise transfers (Figure 4.1 and of multivariate transfers

(Figure 4.3 targeting layer 5.

Waksman’s right V1 is the most aligned with H3 in both pairwise and multivariate information transfer.

In the pairwise analysis, layer 4 is a clear dominant source, with the highest proportion of significant

transfers to layer 5. Layer 2/3 shows some significant transfers, though not more than layer 6 and 5

itself. Interestingly, effective network inference in Waksman’s right V1 showed that layer 2/3 was the

primary source of multivariate transfer to layer 5. Layer 4 was not more of a source than layer 6 and 5

itself, thus reversing the pairwise inference.

Effective network inference should in principle be better suited to testing a hypothesis about one layer

being a primary source of information. This is because the presence of synergy within that layer and

the presence of redundancy with other layers is tested. We therefore suggest that layer 2/3 was the most

primary source of information to layer 5 in Waksman’s right V1 column during observation and not

layer 4.

In other probes, the pairwise analysis reflects that layers 5 and 6 were the more primary sources to layer

5. The multivariate analysis in other probes, as outlined previously shows homogeneous from all layers

to layer 5. Most recordings in V1 therefore do not reflect H3 that layer 4 and in part 2/3 would be the

primary sources to layer 5.
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Waksman’s right V1 has so far shown evidence for all major hypotheses (H1-3) while few of these hy-

potheses are supported by other probes. Although substantial claims cannot be made about V1 columns

in general with only 8 probes to consider (only three of which sample cells in all layers), this suggests

information processing by Waksman’s right V1 that was somehow typical to expectations. Without be-

ing able to test reasons for this, we suggest one possibility is that a stimulus was present in the area of

the visual field relevant to this column, leading to feedforward drivers in the hierarchy becoming active

(Lamme and Roelfsema, 2000).

Next, in order to test whether layer 5 codes densely (H3), we can consider the average rate of pairwise

transfer entropy inside layer 5 compared to inside other layers (Figure 4.5). The average rate of transfer

within layer 5 only stands out in Krebs’ left primary visual cortex, when compared to other rates of

transfer within each layer. All other probes do not show the average rate of transfer within layer 5 to be

significantly higher. Similar to H2, this is not evidence against dense-coding in layer 5 and it is difficult

to conclude whether or not average rate of transfer entropy is well suited to quantify dense coding. If

dense coding leads to a macroscopic structure in the spatiotemporal dynamics encoding information,

such as changing firing rate (Harris and Mrsic-Flogel, 2013), then a more principled estimation might

be found by considering a process to contain population rate rather than spike events.

In order to test whether layer 5 is an information sink (H3), we can consider the ratio of incoming to

outgoing edges in each layer, following effective network inference (Figure 4.2). Inside Waksman’s right

V1, layer 5 was indeed an information sink, reflected by a very high ratio of incoming edges compared

to outgoing edges.

In Waksman’s opposite hemisphere however, layer 5 does not have more incoming than outgoing edges.

Here, instead layer 6 is the only layer that is predominantly a sink. In the other mouse Krebs, layer 5

does have more incoming edges than outgoing edges but the difference is not pronounced compared to

other layers. Here, layers 2/3 and 4 have a similar ratio of incoming to outgoing edges, with layer 6 the

only layer that is predominantly a source.

A consistent story about layer 5 being an information sink was overall not observed. Again, Waksman’s

right V1 was the most aligned to this hypothesis, suggesting information processing by this column more

typical to hierarchical processing, perhaps due to visual stimulus.
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(A) Waksman’s left V1. (B) Waksman’s right V1.

(C) Krebs’ left V1 (a). (D) Krebs’ right V1 (a).

(E) Krebs’ left V1 (a). (F) Krebs’ right V1 (b).

FIGURE 4.5. Average rate of pairwise information transfer between layers inside the
primary visual cortex.
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Finally, evidence for H4 that each layer forms a computationally specific module was not found which

was surprising even in the short time scale and small number of probes analysed. The analysis of aver-

age pairwise transfer entropy rate in Figure 4.5 almost never reflects that each layer has a high rate to

itself in comparison to targeting other layers. This hypothesis was expected to be supported given the

physiological and behavioural specification of each layer (Harris and Shepherd, 2015). However, com-

putational specificity can be implied by things other than unique amounts of information transfer, such as

task-relevance of the information. The quantity of information is not associated with its computational

meaning.

4.2 Extra-column information transfer in V1 and association areas

In order to test which layers offer information transfer between columns, we considered the proportion

of significant pairwise transfers between probes in the same hemisphere of Krebs’ primary visual cortex

( Figure 4.6). Note that in this figure source layers and target layers are from different columns.

H6 considered that layer 6 would be a source of information transfer to layers in other columns. This

was supported, both in Krebs’ left and right primary visual cortices. Although not hypothesised, layer 5

showed a comparable proportion of transfers to layers in disparate columns.

Further, probe (a) in Krebs’ right V1 sampled layers 2/3 and 4. These show less broadcasting to disparate

columns than layers 5 and 6, which aligns with H6. Unexpectedly, layer 6 shows a high proportion of

transfer to layer 2/3 , indicating transfers are possible to non-horizontal targets in the disparate column.

Interestingly, there is asymmetry in both hemispheres. In Krebs’ left V1, probe (a)’s layer 5 shows high

transfer to probe (b)’s layer 4, though none is returned in the other direction. Conversely probe (a)’s

layer 5 to probe (b)’s layer 5 is much lower than the other direction. Meanwhile, in Krebs’ right V1,

there is even stronger asymmetry. Almost all layers in probe (a) show transfer to layer 5 in probe (b), but

none is returned. Further, almost all layers in probe (a) show little to no transfer to layer 6 in probe (b)

but a large proportion of transfer is found in the other direction. Overall, the asymmetry here suggests

that columns as a whole offer some computational specification. This supports the view from Harris

and Shepherd (2015) that even though local excitatory circuits are homologous, their retinotopy leads to

varied function. That is, columns process different areas of the visual field.
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(A) Probe (a) to (b) inside Krebs’ left V1 (B) Probe (b) to (a) inside Krebs’ left V1.

(C) Probe (a) to (b) inside Krebs’ right V1 (D) Probe (b) to (a) inside Krebs’ right V1

FIGURE 4.6. Proportion of significant pairwise information transfers to total possible
links between layers in different columns inside the primary visual cortex.

Finally, results for transfers from V1 columns to association areas did not support either of H5 or H7.

These were that layer 5 and layer 6 would respectively broadcast and integrate long distance infor-

mation from association areas. In our pairwise analysis, no transfers were found whatsoever between

Waksman’s right V1 and anterior visual area. Similarly, virtually no transfer was found between Waks-

man’s left V1 and rostrolateral visual area (VISrl). Of the transfers that were found, layer 5 did not

broadcast to cells in VISrl (H5). Instead, a small proportion of significant transfer was found from layer

6 to cells in VISrl. While layer 6 did receive a small proportion of significant transfer from cells in VISrl

(H7), this was comparable to other layers. These were all sampled association areas and so association

was not investigated further.
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4.3 Evaluation of approach and future directions

This project adopted an information theoretic approach to quantify neural information processing. The

continuous-time estimator for transfer entropy and algorithm for effective network inference were lever-

aged for their ability to quantify information transfers even in the high-dimensional, distributed setting

offered by neuronal populations. We first emphasise how this approach in recordings of visual areas

of mouse brains led to findings that exemplify how information processing need not follow structural

organisation. The primary visual cortex (V1) is structurally organised such that each local excitatory

circuit forms a hierarchy of layers within it. Information transfers in V1 recorded in our dataset did

not adhere to this hierarchical organisation, instead often being homogeneous between layers. Network

structure does not offer insight into its dynamical state space and therefore the information processing

allowed by its activity.

However, our survey of the literature showed that the hierarchy in V1 emerges not only in structure, but

also from the inference of functional connectivity and even the multivariate form of coupling of activ-

ity (Guillery and Sherman, 2002; Wang et al., 2020). This leads us to a simple yet profound nuance

about distributed information processing. It is true that functional connectivity especially in a multi-

variate form, should correlate to information processing, despite not directly quantifying it (Friston,

2011). However when statistically inferred over long time windows, functional connectivity does not

necessarily imply the information processing that is still present during short time windows of obser-

vation. Both our pairwise and multivariate quantification of information transfers showed cases where

functional connectivity was not adhered to, over short observations of 10 - 15 min.

It is possible that given longer time periods, the information theoretic approach would yield quanti-

fied transfers aligned to expectations from functional connectivity. An alternative improvement to our

approach is to test task or condition-related information processing, which could still be appreciably

quantified in short time windows. The dataset used by this project offered spontaneous recordings but

the same estimator and inference algorithm can be applied in recordings during task. One limitation the

information theoretic tools may encounter in this direction is that it may not be obvious how to estimate

the amount of information transferred to the task output/behaviour itself or the amount of information

stored related to stimulus. This would require tailoring the tools to the test condition after considering

the relevant state spaces of behaviour or stimulus.
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A limitation of the approach in our dataset was that macroscopic structures in the spatiotemporal dynam-

ics offered by some layers were unable to be tested for their transfer capacity. Layer 2/3 was suggested

to code sparsely in temporally and spatially specific bursts but this phenomenon was not quantified. A

future direction would be in the adaptation of the continuous-time transfer entropy estimator to be able

to first identify burst events before quantifying related transfers. This might be to other burst events or to

spike events. The latter would be more principled by the expected neural coding between layer 2/3 and

other layers (Petersen and Crochet, 2013). Similarly, layer 5 was suggested to code densely, allowing

varying firing rate to encode information. Quantifying information transfer between a change in firing

rate and other signalling events would require another adjustment to the estimator. Once these notions

of transfers from macroscopic structures can be estimated, their contributions to significant multivariate

transfer can then be tested using effective network inference. This would yield a model more principled

by the complete distributed information processing allowed by a neuronal population.

Overall, this evaluation in visual areas finds the information theoretic approach to still be necessary

in quantifying information. Statistical inferences of brain function offer a distinct framework. The

continuous-time estimator for transfer entropy can be tailored to new contexts, where it can still be

applied to effective network inference allowing further insight into neural information processing.



CHAPTER 5

Conclusion

This project leveraged recent advancements in the estimation of transfer entropy from spike trains to take

advantage of high dimensional recordings in the visual areas of mouse brains. Quantified information

transfers were first under a pairwise analysis between source and target cells. A multivariate analysis

where significance reflected maximal explanation of target state by the minimal set of sources was also

applied. Our evaluation suggests that the latter under effective network inference is better suited to

quantifying information transfers in a complex system containing highly distributed and parallelised

processes.

By quantifying information transfer in short time windows, the findings added nuance to expectations

from functional connectivity inside visual areas. In particular, local excitatory circuits in the primary

visual cortex show a range of information processing not limited to hierarchical organisation. Transfers

between layers can be homogeneous instead of hierarchical and layers other than layer 4 can be the

primary source inside a column. This demonstrates how the information theoretic approach, which

is the only framework that quantifies information, appreciably adds to models of neural information

processing.

Future work should be towards tailoring the continuous-time estimator to task or stimulus driven neural

information processing, as well as towards being able to identify transfers between macroscopic struc-

tures in spatiotemporal dynamics. Quantitative models of neural information processing, principled by

the total state space offered by dynamic complex systems, can then increase understanding of brain

function and natural computation as a whole.
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APPENDIX A

Drawn effective network and limited computations during inference

For ease of visualisation, an example effective network from our results is drawn in Figure A.1.

As explained in Chapter 3 Experiments, effective network inference was sometimes manually limited to

speed up computation. Targets for which inference was limited are listed in Table A.1.
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Mouse Probe Target Added intervals
Waksman Probe 8 2 12

8 13
13 13
17 10
19 13
22 22
43 21
44 21
49 11
51 11
52 14
54 15
55 12

Waksman Probe 3 2 15
3 19
8 14
11 13
27 13
34 15
37 15
39 15
41 15
49 13
51 13
54 11
69 14

Krebs Probe 3 1 21
13 23
14 18
27 19
28 20
31 22
38 22
47 19

Krebs Probes 3, 7 3 20
34 20
38 20
48 20

Krebs Probes 4, 8 5 20
14 20
31 20
64 20

TABLE A.1. Targets where inference was manually limited, showing the number of
intervals added to the conditioning set before continuing to pruning.
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FIGURE A.1. Drawn effective network of sampled neurons in Waksman’s right primary
visual cortex. Node size indicates in-degree, colour indicates out-degree.
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